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SUMMARY 

Let us call a direct extrusion problem (DEP) the problem of finding the shape of the extrudate coming out of 
a die of prescribed shape. An implicit finite element formulation of the DEP which is geometrically general 
and for which a Newton-Raphson technique can be implemented has recently been proposed by Legat and 
Marchal. However, the problem posed to the die designer is frequently the inverse extrusion problem (IEP), 
1.e. finding the die shape which produces an extrudate ofprescribed shape. This paper presents an extension of 
our original method for solving the IEP which avoids the ‘trial-and-error’ iteration on the die geometry itself. 

The advantage of the formulation lies in its capability to handle complex geometries and in its low cost, 
because the CPU time and memory required to solve the TEP are almost identical to those of the DEP. We 
present benchmark results for squares and rectangles and new results obtained for geometries involving 
multiple corners. For an octagonal shape we also consider the case of a power-law fluid. 

For all results presented in this paper, surface tension has not been included. 
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1. I NTRODIJCTI ON 

Let us consider a free surface flow problem in a three-dimensional geometry. For the sake of 
simplicity the flow is assumed to be isothermal and the fluid is Newtonian. Let us assume that an 
algorithm is available to solve the direct extrusion problem (DEP). If the extrudate shape does 
not correspond to the desired profile, the die designer will naturally adapt the geometry of the die 
in order to correct the extrudate shape. An outer iteration (above the solution of the DEP) will be 
introduced and the die geometry will be modified according to the designer’s intuition or on the 
basis of an interpolation between the prescribed shape and the simulation result. 

This inverse extrusion problem (IEP) is so important from a technical point of view that many 
authors who presented numerical solutions for the DEPlp4 also considered the IEP. In Refer- 
ence 2 an outer iteration on the die geometry above the solution of the DEP has been introduced. 
In References 1, 3 and 4 the use of an outer iteration on the free surface position itself (streamline 
integration) allows for an inverse tracking of the characteristics ( v  for the DEP, - v  for the IEP). 
For this backward tracking the prescribed extrudate shape becomes a boundary condition of the 
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problem. However, difficulties occur near the die lip, where the fluid velocity is imposed to be 
zero. In an implicit technique based on a Galerkin (or a streamline upwind/Petrov-Galerkin) 
formulation of the kinematic condition, removing the initial data of the kinematic condition at 
the die lip makes the tangent matrix singular and prevents the use of the method. 

In order to formulate the TEP correctly in terms of velocity, pressure and displacement, we 
replace the initial data on the free surface at  the die lip by the constraint that the shape of the 
extrudate is prescribed at the end of the free surface. The method is inspired by a technique 
frequently used in the field of numerical solutions of ODES. To illustrate our method, let us 
consider a second-order ODE written as 

find f (x )  such that 

f ( x ) = A ( f ( x ) )  VX€[O, 13. (1) 

Equation (1) is subject to two boundary conditions, which can be given at both ends of the 
interval or at one end only. Let us assume that we want to solve ( 1 )  numerically subject to the 
conditions 

and that we use a numerical technique which requiresfand fin x =O. This case occurs for example 
with most methods of the Runge-Kutta family, which have the advantage of not requiring one to 
solve a linear system. A classical way to solve ( 1 )  subject to (2) and ( 3 )  is then to estimate the value 
ofj(0) and to use a shooting method in order to satisfy (3) at convergence of the algorithm. An 
alternative is to introduce the value of f(0) as a variable of the problem (in the previous 
formulationf(0) is a datum) and to write the constraint (3)  as an equation forj(0). In this method 
the new variable which replaces the datum f(0) is a multiplier; this numerical technique is 
cost-effective with respect to the shooting method, because the additional variable can be 
eliminated algebraically. 

Our method is inspired by the scheme described above, provided that one replaces the datum 
f(0) by the initial position of the free surface at the die lip and introduces a smooth variation of the 
die shape in the direction of extrusion in order to look for a solution of the IEP in a class of 
technically acceptable dies. This method is certainly cost-effective for the IEP formulated in terms 
of velocity, pressure and displacement, because the number of velocity and pressure variables is 
superior to the number of position Variables, which is  in turn superior to the number of 
multipliers required to describe the die section. 

Strictly speaking, the new variable is not a Lagrange multiplier because we do not solve 
a constrained optimization problem. However, it is impossible to formulate a free surface 
problem in the Lagrangian sense.5 

However, in the extended sense we consider the new variable as a multiplier which has been 
introduced in order to weakly impose the boundary condition at the exit. A similar approach has 
previously be used in free surfaces problems in order to weakly impose kinematic and dynamic 
 condition^.^.^ In view of the impossibility of formulating the Navier Stokes equations with free 
surfaces in a variational sense as a minimum problem, we consider its extension based on 
a Galerkin formulation. Tndecd, this definition of the multipliers is inspired by the general 
optimization approach. 

Section 2 formulates the IEP and introduces a finite element representation, while Section 
3 presents the remeshing techniques used in order to minimize mesh deformations. In Sections 
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4 and 5 we describe benchmark results for square and rectangular geometries. Then we demon- 
strate the robustness of the method for several geometries involving abrupt corners. 

2. FORMULATION O F  THE INVERSE EXTRUSION PROBLEM 

We simulate steady three-dimensional isothermal free surface flows of a Newtonian fluid (or 
a generalized Newtonian fluid). Let SZ be the flow domain, with boundary dCl. The geometry of 
the problem is schematically defined in Figure 1, which is two-dimensional for the sake of clarity, 
although all problems presented in this paper are three-dimensional. 

Let (v, p) be respectively the velocity and pressure of the problem, elements of the function 
space V x  P defined on the flow domain Q. Let h be the amplitude of the displacement of the free 
surface iiQFree along the d-direction, so that the displacement 6x of a point of the frcc surface is 
given by 

ax= hd on L7QFree. (4) 
The direction d can vary from point to point in order to describe the displacement allowed to 

the free surface, but d is given a priori and is not a variable of the problem. In practice, d is 
calculated as the normal to the initial guess of the free surface. Functions h belong to a function 
space H .  Along lines of discontinuities of  the normal, two directions d ,  and two amplitudes h, are 
defined in order to correctly handle the motion of corners. The double definition allows corners to 
move frccly in thc planes orthogonal to the ,direction of extrusion. More precisely, we do  not 
consider one field h but a series of fields hi belonging to a series of function spaces H, limited to 
‘faces’ of the free surface, as explained in Reference 8. Let dQ,,, be the die boundary itself, on 
which a zero velocity is prescribed, and let CLlP be the curve representing the die lip. Let Chxlt be 
the curve located at the intersection between the free surface and the outlet section. We introduce 
a generalized Lagrange multiplier g belonging to G, which is a space of functions defined over 
CExit. The function g defines the shape of the die and is adapted in order to satisfy the constraint 
on the extrudate shape on CExit at the end of the free surface. If CFrlt and CLIP are topologically 
identical, the deformation of the die shape can be naturally defined as 

6x=f(z)gd on a&,,,. ( 5 )  
In (5),  z represents the direction of extrusion and we have introduced the hypothesis of 

proportional adaptation in the z-direction. The die design functionf(z) is of course a datum of 
the problem and describes the transition between the prescribed inlet section and the die lip. To 

C Lip 

Figure 1. Configuration of the extrusion die and of the extrudate 
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illustrate (5),  let us consider cases a, b and c in Figure 2. The functionf(z) is defined as 

f’(z)=O on cz,, z21, 

with zldz2dz3<z4. 
In case ‘a’ z2, z3 and z4 are not identical. For case ‘b’ z3 =z4 and for case ‘c’ z2 =z3. It must be 

noted that z1 cannot be equal to z2 if we want to have compatibility between the die modification 
and the imposed inlet velocity profile. It is clear that the die functions can be more complex in 
order to consider more sophisticated dies. There is, however, a topological limitation: the number 
of nodes on CErrt and CLIP must be equal. 

If the flow domain boundary dfl is partitioned into dRDlrichlrt (the boundary part on which 
Dirichlet boundary conditions apply) and 8flNrumann (the boundary part on which homogeneous 
Neumann boundary conditions apply), the DEP and IEP are respectively formulated as 

DEP: find (v, p ,  h ) ~  V x P x H such that 

v . ( q V v ) - v p = ~  on Q, (7) 

V - v = O  on Q, (8) 

v . n = O  on 8Rbree, (9) 

case a 

case b 

case c 

Figure 2. Lhe design functions for the adaptative die section 
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toget her with 

IEP: find (v, p ,  h, g ) ~ V x  P x H x G such that 

together with 

where Vv denotes the symmetric part of the velocity gradient, is the fluid viscosity and n is the 
unit normal vector pointing out of the domain Q. 

In the IEP, equation (16) guarantees that the extrudate shape matches the prescribed shape 
which is giken as the initial guess and is the equationftir g. Equation (17) replaces the data at the 
die lip and is written as a constraint on h. It must be noted that equation (17) is a valid boundary 
condition only if CLIP and CFXlt are topologically identical. In addition, standard Neumann and 
Dirichlet boundary conditions apply in the entry section where a fully developed velocity profile 
is imposed, on planes of symmetry and on the die wall where the velocity vector is imposed as 
zero. 

The IEP finite element formulation is derived from equations (13)-(19), after integration by 
Green's theorem of equation (1 3), so that Neumann boundary conditions appear naturally. The 
spaces V h ,  fh,  tih and Gh being appropriate approximation subspaces for V, P ,  H and G, the 
discrete IEP is formulated as 

Find (vh ,  p h ,  hh,  gh)EVh x P h  x H h  x Gh such that 

{ y V v - p I ; V w ) = O  VW€Vh, (20) 

{ vv;  4 )  =o V q E P h ,  (21) 

{ v - n ;  k ) = O  V k H h ,  (22) 

{ h ; l )  = O  V k G h .  (23) 

In equations (20)-(23), { .  ) stands for the L2 scalar product on Q, L:RFree or CbXlt; the space 
Vh takes the Dirichlet boundary conditions (18) into account and the displacement h is con- 
strained by g at the lip of the extrusion die. 

As in any saddle-point problem, interpolation subspaces V",  P h ,  Hh and Gh cannot bc selected 
arbitrarily. Interpolations must satisfy the so-called Ladyzhenskaya-Brezzi-Babuska (LBB) 
conditions. Indeed, these discrete LBB conditions can be seen as a critical requirement in the 
stability of mixed finite elcment methods. For Vh and Ph we have selected the QZ-CO/QI-CO 
element (or the QI-Co/Qn-CI element). The selection of shape functions for H h  is somewhat 
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more difficult, since no theoretical results are available for this non-linear problem. In the absence 
of surface tension we have observed that the linear approximation for H h  works better than the 
quadratic one, in the sense that wiggles in the free surface and divergence of the iterative scheme 
have sometimes been observed with quadratic shape functions. However, all results of Sections 
4 and 5 have been obtained with both bilinear and biquadratic position shape functions. 
Functions in Gh are equal to the restriction on the die exit CFxlt of functions of H h ,  i.e. these 
functions arc cither piecewise linear or piecewise quadratic. The approximation subspaces H h  and 
Gh arc finally divided into NF faces, generating HF and G:, to take into account the presence of 
corners. This procedure is explained in Reference 8. 

3. REMESHING 

The position of the boundary comes into (20H23) by means of the relation (4) on the free surface 
C?sZkree and (5) on the die boundary 03RDie. In order to have acceptable mesh deformations, it is 
necessary to adapt thc position of the interior nodes as a function of the boundary nodes. If we use 
a linear relationship between the displacerncnts of the interior and boundary nodes, the remesh- 
ing of the interior nodes can be coupled to the system and a full Newton Raphson technique can 
be derived. 

In all examples we have used the remeshing rule developed in Reference 8, which is based on 
the Euclidean distance between the boundary nodes and the interior nodes. This remeshing rule is 
applied in the whole flow domain R and is implemented as follows. 

Firqtly, we divide f2 into a series of ‘planes’, logically orthogonal to the direction of extrusion. 
Interior nodes belong to onc and only one planar section R R  and the traces in each plane of the 
three-dimensional mesh are topologically identical. 

Secondly, a one-dimensional remeshing rule is used on boundary segments dRR of each plane 
O R ,  such that the points are moved tangentially as a linear function of the displacement of the 
extremities of the segment. 

Finally, a Euclidean distance rule relates the interior displacements to the boundary displace- 
ments in each remeshing section R R .  The position of an interior node x ,  is formally written as 

whcreQ is an index describing the two segment extremities (for a one-dimensional rule on 2sZR) or 
all nodes located on c?R, (for a two-dimensional rule on Q R ) .  The weight w i j  is a function of the 
Euclidean distance between node i and node j :  

This rule has the advantage of not requiring any particular logical organization of the mesh into 
each remeshing section R R .  In addition, the Euclidean distance remeshing rule associated with 
the priority rule allows us to deform the mesh smoothly. These rulcs are described in Reference 8. 

4. A BENCHMARK PROBLEM: THE SQUARE SECTION 

Computing the die geometry which produces a square profile is a benchmark problem which has 
been considered by Tran-Cong and Phan-Thien,’ Yokoi and Scriven3 and Wambersie and 
Crochet.’ We have tested our technique on this problem with meshes 1-111, for which the die 
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design function is described by 

21 =0, 2 2 = 2 ,  2 3 ~ 6 ,  ~ 4 ~ 8 .  

In order to evaluate the effect of the upstream geometry on the extrudate shape, we have also 
generated meshes IV V1, which correspond to the die design function 

Z 1  =o, z 2  = z j = 4, ~ 4 = 6 .  

The die length is equal to 8 for meshes 1-111 and 6 for meshes IV-VI. The extrudate length is 
4 lor all meshes. The square section (final product) has a side length equal to 2. The inflow 
geometry of meshes IV-VI has a side length equal to 4 and is also identical to the geometry used 
by Wambersie and Crochet2. Figures 3 and 4 show the meshes while Figure 5 shows the die lip 
section and the final extrudate section for meshes 1-111. 

In order to quantitatively evaluate the swelling effect, we introduce the swelling ratio along the 
plane of symmetry, Sw,, and the diagonal swelling ratio Swd. Referring to Figure 6, let 2M and 
2 0  be respectively the side and diagonal of the square extrudate profile. We define the length of 
the die in the planes of symmetry at the die lip by 2m, whereas the diagonal of the die is defined by 
2d. The swelling ratios are defined as 

sw = ( M  ~ m) / M ,  

Sw,=(D--d)/D. 

mesh I mesh I1 mesh 111 

Figure 3. Finite element meshes 1-111 used for testing the accuracy of the method (square extrudate) 
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mesh IV mesh V mesh V1 

Figure 4. Finite element meshes IV-VI used for testing the accuracy of the method (square extrudate) 

mesh I mesh I1 mesh 111 

Figure 5. Comparison bctween the die lip and the extrudate section for meshes 1-111 

Table I reports the total number of variables in the problem and the swelling ratios. It appears 
from Table I and Figure 7 that the convergence with mesh refinement is excellent between meshes 
TI and 111. Meshes I and IV are coarse, but their results are qualitatively good. The results for 
meshes IV-VI agree exactly with the results for meshes 1-111 although the die function is different 
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Figure 6. Typical dimensions for the square extrudate 

Table I 

Degrees of 
Mesh Nodes Elements freedom S W ,  SW.4 

I 425 256 1041 0.236 - 0.004 
I1 1078 756 31 10 0.190 -0017 
111 2187 1664 6851 0.179 - 0.02 1 

VI 2304 1750 7058 0.179 -0.021 
v 1237 873 3455 0.190 -0.017 
IV 495 304 1113 0.237 - Oa04 

Figure 7. Mesh refinement analysis for the square extrudate 

in the latter cases. This can be explained because the length of the constant shape section, z 4  --z3, 
is equal to 2 for both meshes, and the upstream section has very little influence on the extrudate 
shape as long as z4-z3  is bigger than a typical dimension of the section. We have found that 
a length of 2 is perfectly adequate in order to avoid dependences of the extrudate shape on the 
upstream geometry. 
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The results of Tran-Cong and Phan-Thien' have not been included in Table I ,  because they 
used die functions for which z4  - z = 0 (is. a linear variation up to the die lip), in which case the 
shape of the upstream section has a strong influence on the swelling. Yokoi and Scriven3 and 
Wambersie and Crochet' do not mention numerical values, but their shapes agree graphically 
with ours. 

These solutions converge quadratically up to a relative precision of lo-" in five or six 
iterations. 

5. NUMERICAL RESULTS FOR COMPLEX GEOMETRIES 

5. I .  Rectangular pmfi1e.Y 

For a Newtonian fluid we report on die sections which produce rectangular extrudates for 
different aspect ratios. As a difference from the square section, an appropriate definition of two 
geometrical degrees of freedom around the corner is essential, since one does not know a priovi in 
which direction the corner will move. 

In all cases the die function has been chosen as 

z1 =o, z 2 = 2 ,  ~ 3 = 6 ,  zq = 8. 

A comparison between the extrudate shape (left) and the die section shape (right) is given in 
Figure 8. Quadratic convergence of the iteration scheme has been observed. 

5.2. Octagonal profile 

the viscosity y on the shear rate j of the power-law type: 
Most polymers present a shear-thinning behaviour which can be described by a dependence of 

y ( j )  = y o j m - l .  

This is valid as long as memory effects are not dominant. For a Newtonian fluid the power-law 
index is equal to 1 ,  whereas for many polymers it lies between 0.5 and 0.2. We know that in the 

ri 
I 

j---7 , 
Figure 8. Cross-sections of dies (right) for generating rectangular extrudates (left) 
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prcscnce of a low power-law index the velocity distribution will be relatively flat across the die 
section, a large velocity gradient existing near the wall of the die where the velocity vanishes. This 
velocity distribution will reduce swelling effects. We have analysed the shape of the die section 
which produces an octagonal extrudate for m = 1,0.8,0.6,0.4 and 0.2. Let us also emphasize that 
the no-slip boundary condition has been used at the die wall and that this hypothesis is probably 
not verified in many extrusion applications. 

The octagon side being equal to  1, we have used the following die function: 

z ,=o,  2 2 = 2 ,  ~ 3 = 6 ,  Z q  = 8. 

The total die length is equal to 8, the extrudate length being equal to 4. The mesh used for these 
simulations is shown in Figure 9. We have used symmetry with respect to the planes x=O and 
x = y  and discontinuity of the direction d has been used for the corner. Die section shapes are 
reported in Figure 10 for the different values of the power-law index. It can be observed that the 

Figure 9. Finite element mesh used for the octagonal extrudate 

Figure 10. Die cross-sections as a function of the power-law index for the octagonal extrudate 
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shear-thinning behaviour indeed reduces the swelling but that the effect of the corner remains 
important even for low values of the power-law index. For very low values of the power-law index 
(0.3 and lower), sharp velocity boundary layers require meshes finer than the mesh shown in 
Figure9 and a Picard iteration scheme on ~ ( j )  must be used to obtain results at rn=0.2. 
However, a full Newton-Raphson scheme can be used for the indices between 1 and 0.4, in which 
case a quadratic convergence is observed. 

To understand the effect of the uniformity of the velocity distribution on the swelling, contour 
lines of the normal velocity are shown in Figure 11 for different power-law indices. 

5.3. Stur-like proJile 

For a Newtonian fluid the die section which produces a ‘star-like’ extrudate is shown in 
Figure 12. Shrinkage effects are large near the re-entrant corner A, where two geometrical degrees 
of freedom are defined as in the previous example. Results have also been obtained in five or six 

a2 0.4 0.6 0.8 1 .o 
Figure 1 1 .  Die velocity profiles as a function of the power-law index for the octagonal extrudate 

Figure 12. Die cross-section for the star-like extrudate (Newtonian fluid) 



DIE DESIGN 41 

Figure 13. Die cross-scction for the cross-like extrudate (Newtonian fluid) 

iterations. For angles c i  smallcr than 90 ’ and for a Newtonian fluid we have observed difficulties 
in obtaining solutions to the IEP. 

S.4. Cross-like projile 

The method presented in this paper has the capability to handle profiles with multiple corners. 
We have therefore computed the IEP for an extrudate section which has the shape of a cross and 
involves 12 corners. We have also used symmetry with respect to the planes x = 0 and x = y and 
discontinuity of the direction d at the corner A. The fluid is Newtonian. 

In all previous Newtonian cases we have started the Newton-Raphson scheme from a solution 
obtained on the fixed geometry, the normal velocity boundary condition being dropped on the 
free surface. In the present case divergence of the iterative scheme has been observed and we had 
to find an initial solution by solving three explicit iterations on the free surface position. The 
Newton-Raphson scheme can then be initiated and quadratic convergence is observed. The total 
number of iterations in order to reach a relative precision of is equal to eight (three explicit 
iterations and five implicit iterations). A comparison between the die and extrudate shapes can be 
found in Figure 13. For large aspect ratios we have not been able to find a solution to the IEP 
with a Newtonian fluid. 

6. CONCLUSIONS 

We have presented a numerical scheme to solve the inverse extrusion problem by means of an 
implicit Newton-Raphson iterative technique. Discontinuity of the direction of displacement as 
well as a remeshing technique based on the Euclidean distance have been used in the extrudate 
section. The same remeshing technique has been used in the adaptive section of the die. 

The method, which is based on an implicit formulation, avoids the ‘trial-and-error’ iterations 
classically used to solve the IEP. Therefore the cost of the IEP is (almost) identical to the cost of 
the DEP, the number of additional variables being only marginal. 

Several profile shapes have been presented. The results show that for a Newtonian fluid with 
a no-slip boundary condition at the die wall the dic section differs strongly from the extrudate 



42 V. LEGAT AND J.-M. MARCHAL 

section. The effect of shear thinning has also been analysed for an octagonal extrudate. Although 
less swelling is expected for a shear-thinning fluid, results show that the die section shape still 
differs from the section of the extrudate, especially in the vicinity of corners. 

The method can be directly extended to non-isothermal problems, while slipping at the wall 
can be easily introduced provided that the relationship between the shear stress and the 
tangential velocity is known. 
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